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1 This is a standard theorem (Google will lead you to it directly); it’s more or less what

Kruskal actually proved (the version in the lecture notes, week 2, of unlabelled trees, is

equivalent to the |S| = 1 case).

The proof is an easy modification of the lecture notes proof; one strengthens the statement

to ordered labelled topological minor on rooted labelled trees (as in the lecture notes) and

follows the proof there, adding ‘labelled’ wherever it is necessary. The only point where

one needs to do more is that it does not suffice to find one (i, j) such that the rooted forest

Ti − ri is an ordered labelled topological minor of Tj − rj, since we cannot simply map

ri to rj; the label of ri need not precede the label of rj. But by Propositions 6 and 8 of

the lecture notes, at this point in the proof it follows that there is actually some infinite

chain i1 < i2 < . . . such that Tia − ria is an ordered labelled topological minor of Tib − rib
whenever a < b. Since the labels are well-quasi-ordered, the sequence of labels of ri1 , ri2 , . . .

cannot contain an infinite strictly descending sequence or infinite antichain. Proposition 6

now says there exist a < b such that ria has label equal to or preceding that of rib , and we

thus have the desired fact that Tia is an ordered labelled topological minor of Tib .

2 (a) This is (a case of) the Andrásfai-Erdős-Sós theorem, and just citing it is fine. Here is

a proof.

Let first I1 and I2 be disjoint independent sets in V (H) of size greater than 2m/5.

Such sets exist since we can pick an edge xy and then N(x) and N(y) are examples

of such sets. Either I1 and I2 form a bipartition of H and we are done, or there is

some z in neither I1 nor I2. If z has a neighbour w in I1, then z has at most m/5

neighbours outside I1, otherwise w is adjacent neither to the vertices of I1 nor to the

vertices N(z) \ I1, and this leaves less than 2m/5 possible neighbours, a contradiction.

It follows that if z has a neighbour in I1, then it has m/5 neighbours in I1. If now also

z has a neighbour y in I2, then y cannot be adjacent to any of the vertices of I2, nor

to any vertex of N(z) ∩ I1, and these two sets are disjoint of sizes at least 2m/5 and

m/5 respectively. Again this is a contradiction as it leaves only 2m/5 vertices to be

neighbours for y.

It follows that we can add z to one of I1 and I2 to get a larger pair of disjoint inde-

pendent sets in V (H); repeating this we obtain the desired bipartition of H.

(b) This is a classic NP-completeness result, mentioned as such in the lectures. If you

figured it out on your own, well done—but you should have realised that this must be

easy to find online, and indeed there are several different routes that show up on the

first page of a Google search; or you could just cite it.

(c) There are several ways to do this. Probably the easiest is to take a vertex-minimal

graph F which does not contain K3 and which cannot be coloured with C colours; we

proved such graphs exist in the course. Suppose t = v(F ). Now for each sufficiently

large n we construct an n-vertex graph G by ‘blowing up’ F ; that is, by replacing

vertices of F with independent sets and edges with complete bipartite graphs. We

choose the sizes of these independent sets to be bn/tc and dn/te in order to obtain n

vertices in total. Now G does not contain a copy of K3, and since each vertex of F is

in an edge (otherwise F would not be minimal) each vertex of G has degree at least



n/(2t). Provided that log n > 2t, which is true for sufficiently large n, the graph G is

an example as desired.

3 (a) Summing over v, we have
∑

v∈V (H)

∑
T∈K3(H)

v∈T
w(T ) ≤ v(H); since each K3-copy appears

exactly three times in the sum on the left, we have 3
∑

T∈K3(H) w(T ) ≤ v(H) and the

desired inequality follows.

(b) Given d > 0, we can assume d ≤ 2 (since otherwise R(G) will be empty and the

question is trivial) and we choose ε = 10−6d. Let K be the constant returned by the

Regularity Lemma, and assume n > 108K. Let R(G) be as in the question.

Given a fractional triangle factor w of R(G) with weight at least 1
3
, we begin the

following algorithm. Start with y the everywhere zero fractional triangle factor of

R(G) and S the empty set. Choose T ∈ K3

(
R(G)

)
such that y(T ) ≤ 0.9999w(T ), and

pick a triangle in G with one vertex in each part indexed by T which is vertex-disjoint

from the triangles in S. Add this triangle to S, and increase y(T ) by 1
|V1| . Repeat until

y(T ) ≥ 0.9999w(T ) for every T ∈ K3

(
R(G)

)
.

This algorithm can only fail if at some point it is not possible to pick a triangle in G as

stated. So we aim to show this cannot occur. Our first task is to argue that S cannot

cover too many vertices in any given Vj with 1 ≤ j ≤ k. By definition, for any given

T ∈ K3

(
R(G)

)
that contains j, the number of triangles in S that we picked crossing

the parts indexed by T is at most 0.9999w(T )|V1| + 1 ≤ 0.99999w(T )|Vj|. Summing

over all choices of T containing j, the number of triangles in S that meet Vj is at most

0.99999
∑

j∈T w(T )|Vj| ≤ 0.99999|Vj|, so that at least 10−5|Vj| vertices of Vj are not

contained in triangles of S.

Now given any ijj′, let V ′i be the vertices of Vi not covered by S, and define similarly

V ′j and V ′j′ . As in lectures, the number of vertices of V ′i with fewer than (d − ε)|V ′j |
neighbours in V ′j is at most ε|Vi|, and similarly with fewer than (d− ε)|V ′j′| neighbours

in V ′j′ . Since |V ′i | > 2ε|Vi|, there is a vertex u of V ′i with at least (d− ε)|V ′j | neighbours

in V ′j and at least (d− ε)|V ′j′ | neighbours in V ′j′ . Since (d− ε)10−5 > ε, the density of(
NG(u) ∩ V ′j , NG(u) ∩ V ′j′

)
is at least d− ε, in particular there is an edge vw between

these two sets and this gives a triangle uvw crossing the parts indexed by T which is

disjoint from all members of S. This shows the above algorithm does not fail.

Since at the termination of the algorithm the number of triangles in S which meet Vj

is at least 0.9999|Vj| (proved much as the upper bound above: we have
∑

j∈T w(T ) = 1

from (a) )), the number of vertices covered in total by S is at least 0.9999(n− |V0|) ≥
0.9999(1− ε)n ≥ 0.999n. Thus |S| ≥ 0.333n.


