
LTCC Geometry and Physics: Exam 2023

(Note: The Einstein summation convention is assumed in question 3.)

1. As a subset of the n× n complex matrices Matn(C), the n× n Hermitian matrices are

Hn := {X ∈ Matn(C) |X = X† },

where the dagger † denotes the Hermitian conjugate (complex conjugate transpose).
(i) By writing down an explicit set of coordinates, show that, as a real manifold, Hn is
isomorphic to Rd for some dimension d that you should find in terms of n.
(ii) Letting Ẋ denote the tangent to a path X(t) ∈ Hn, a metric g on the space of n × n
Hermitian matrices is defined in terms of the trace by

g(Ẋ, Ẋ) = tr Ẋ2.

By considering the action S =
∫ t1
t0
L dt with the Lagrangian

L = 1
2
g(Ẋ, Ẋ) = 1

2
tr Ẋ2

and calculating the Euler-Lagrange equations in terms of the coordinates from part (i), or
otherwise, show that the geodesics for this metric are straight lines.

Solution to Q1: (i) We can write the entries of X ∈ Hn as

Xjj = xj, Xjk = Xkj = yjk + izjk, j < k,

for real coordinates xj, j = 1, . . . , n and yjk, zjk, 1 ≤ j < k ≤ n, which gives a single real
chart with d = n+ 2× 1

2
n(n− 1) = n2 real coordinates, so the n×n Hermitian matrices are

isomorphic to Rn2
as a manifold.

(ii) As in lectures, for a Riemannian manifold with metric g, the geodesic equations are the
Euler-Lagrange equations derived from the action S =

∫
L dt with Lagrangian L = 1

2
g(ẋ, ẋ),

where ẋ denotes the tangent vector to a path parametrized by t in a set of local coordinates
(x). Using the coordinates from part (i), the Lagrangian takes the explicit form

L =
1

2

n∑
j,k=1

ẊjkẊkj =
1

2

∑
j

Ẋ2
jj +

∑
j<k

ẊjkẊjk,

which is just

L =
1

2

∑
j

ẋ2j +
∑
j<k

(ẏ2jk + ż2jk)

(corresponding to free motion). Hence the Euler-Lagrange equations are

d

dt

(
∂L

∂ẋj

)
− ∂L

∂xj
= ẍj = 0, j = 1, . . . , n,

and similarly for the coordinates yjk, zjk we have the equations

2ÿjk = 0 = 2z̈jk, j < k.



The solutions of all these equations are linear functions of t, which give straight lines in Hn,
as required. Otherwise: Replacing X → X + δX in the action S[X] gives

S[X + δX] =
1

2

∫ t1

t0

tr
(
Ẋ2 + Ẋ δẊ + δẊ Ẋ + (δẊ)2)

)
dt,

so combining the two middle terms and integrating by parts gives

S[X + δX] = S[X] +

∫ t1

t0

(
d

dt
tr(Ẋ δX)− tr(Ẍ δX) + 1

2
(δẊ)2

)
dt.

Assuming that the variation δX vanishes at the endpoints t0, t1, but is otherwise arbitrary,
the first term in the middle above is [tr(Ẋ δX)]t1t0 = 0, so from the principle of least action,
requiring that the first variation δS = 0 gives the equation of motion

Ẍ = 0 =⇒ X = At+B, A,B arbitrary,

which is straight line motion. (In lectures, it was mentioned that geodesics can also be
derived from variations of the arc length integral

∫
ds =

∫ √
g(ẋ, ẋ) dt, which gives yet

another way to obtain the same result.)

2. The n-particle Calogero-Moser system on T ∗Rn, with coordinates/momenta qj, pj, j =
1, . . . , n and canonical symplectic structure ω =

∑n
j=1 dpj∧dqj, is defined by the Hamiltonian

H =
1

2

n∑
j=1

p2j +
∑

1≤j<k≤n

1

(qj − qk)2
.

(i) Write down the equations of motion (Hamilton’s equations).
(ii) For two particles (n = 2), show that these equations imply that the Lax equation

dL

dt
= [M,L]

holds, where L = L(t),M = M(t) are 2× 2 matrices with entries given by

Ljj = pj, Ljk =
i

qj − qk
(j 6= k), Mjj = 0, Mjk =

i

(qj − qk)2
(j 6= k),

with i =
√
−1. Hence show that are two independent conserved quantities

Hj =
1

j
trLj, j = 1, 2,

and use this to conclude that the two-particle system is integrable in the Liouville sense.
(iii) Letting Q = Q(t) = diag(q1, q2), find a constant matrix C such that the (Hermitian)
matrix

X(t) = Q0 + L0t with Q0 = Q(0), L0 = L(0),

satisfies the momentum map condition

[X, Ẋ] = C = [Q,L].



Solution to Q2: (i) Hamilton’s equations are

q̇j = pj, ṗj = 2
∑
k 6=j

1

(qj − qk)3
, j = 1, . . . , n.

(ii) Computing the Lax equation, the left-hand side gives

dL

dt
=

(
ṗ1 − i(q̇1−q̇2)

(q1−q2)2
i(q̇1−q̇2)
(q1−q2)2 ṗ2

)
,

and the right-hand side is

[M,L] =

[(
0 i

(q1−q2)2
i

(q1−q2)2 0

)
,

(
p1

i
(q1−q2)

− i
(q1−q2) p2

)]
,

so the Lax equation follows from ṗ1 = −ṗ2 = 2(q1 − q2)
−3, q̇1 − q̇2 = p1 − p2 (only 3

independent conditions). Taking the trace of the Lax equation gives

d

dt
trL = tr [M,L] = 0, and

d

dt
1
2
trL2 = trLL̇ = tr (L[M,L]) = 0

(as in lectures), so this produces two conserved quantities

H1 = trL = p1 + p2, H2 = 1
2
trL2 = H = 1

2
(p21 + p22) +

1

(q1 − q2)2
,

and from the dependence on momenta these are clearly independent functions. Also, because
H1 is conserved, the Poisson bracket of these two functions is given by d

dt
H1 = {H1, H2} = 0,

so they are in involution. The system has 2 degrees of freedom and has 2 independent con-
served quantities in involution, so it satisfies the Liouville definition of complete integrability.
(iii) Direct calculation shows that [X, Ẋ] = [Q0, L0] = [Q,L] = C, where

C =

(
0 i
i 0

)
.

(This suggests a connection between Calogero-Moser and free motion as in question 1, but
that’s another story! The practical upshot of this is that the system can be solved by
diagonalizing the Hermitian matrix X to find Q.)
3. In 1+1-dimensional Minkowski spacetime with coordinates (x0, x1) = (t, x) and metric
g = (gµν) = diag(1,−1), a ϕ4 field theory is defined by the Lagrangian density

L = 1
2
gµνϕµϕν − 1

4
λ
(
1− ϕ2

)2
.

Here g−1 = (gµν) is the co-metric, subscripts on ϕ denote derivatives, λ > 0 is a coupling
constant, and units are chosen so that the speed of light c = 1.
(i) Write down the Euler-Lagrange equations for this theory, and use the momentum density

π =
∂L
∂ϕt



to obtain an expression for the Hamiltonian via the standard Legendre transformation

H =

∫
R

(
πϕt − L

)
dx.

(ii) Consider a stationary field (ϕt = 0) that interpolates between the two different vacua
at ϕ = ±1 as x→ ±∞, and complete the square in the integrand to show that the value of
energy H = E = const can be written as

E =
1

2

∫ ∞
−∞

(
ϕx −

√
λ
2
(1− ϕ2)

)2
dx+

√
λ
2

∫ ∞
−∞

(1− ϕ2)ϕx dx.

Hence, by rewriting the second term as an integral over ϕ, obtain the Bogomolny-Prasad-
Sommerfield (BPS) bound

E ≥ 2
√

2λ

3
,

and sketch the profile of a topological soliton (a kink) which attains this bound.
(Note: Obtaining the explicit solution of the differential equation is not necessary to answer
the question.)

Solution to Q3: (i) From

L = 1
2
(ϕ2

t − ϕ2
x)− λ

4

(
1− ϕ2

)2
,

we have the Euler-Lagrange equations

∂

∂xµ

(
∂L
∂ϕµ

)
− ∂L
∂ϕ

= 0 =⇒ ϕtt − ϕxx − λϕ(1− ϕ2) = 0.

The momentum density is

π =
∂L
∂ϕt

= ϕt,

and the Hamiltonian has the standard form
∫
Rd

(
1
2
(π2 + (∇ϕ)2) + V(ϕ)

)
ddx considered in

lectures, being an integral over d-dimensional space in the case d = 1, namely

H =

∫
R

(
1
2
π2 + 1

2
ϕ2
x + λ

4
(1− ϕ2)2

)
dx.

(ii) Setting ϕt = π = 0 gives the value of the energy H = E for a stationary solution as

E =
1

2

∫
R
I(x) dx,

where the integrand is

I(x) = ϕ2
x +

λ

2

(
1− ϕ2

)2
=

(
ϕx −

√
λ

2
(1− ϕ2)

)2

+ 2

√
λ

2
(1− ϕ2)ϕx,

which gives the required result for the energy. Since the first term is a perfect square, this
gives the BPS bound

E ≥ 1
2

∫ ∞
−∞

2
√

λ
2
(1− ϕ2)ϕx dx =

√
λ
2

∫ 1

−1
(1− ϕ2) dϕ,



using the given boundary conditions for ϕ as x→ ±∞, or in other words

E ≥
√

λ
2

[
ϕ− 1

3
ϕ3
]1
−1

=
2
√

2λ

3
,

as required. The minimum energy bound is saturated when the squared term in I(x) vanishes,
which reduces the second order ODE for ϕ(x) to first order, that is

ϕx =
√

λ
2
(1− ϕ2) ≥ 0,

which is consistent with the boundary conditions. The explicit kink solution is

ϕ = tanh

(√
λ
2
(x− a)

)
,

where the constant a is arbitrary, but the shape of the kink profile (as sketched below) can
be inferred simply from the asymptotic values ϕ = ±1 and the fact that ϕx > 0 for |ϕ| < 1.
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