
2

Basic concepts

2.1 The equations of fluid mechanics

We start with a brief introduction to the equations of fluid mechanics. For
further details see for example Batchelor [8] or Acheson [1].

All the fluids considered in this book are assumed to be inviscid and to
have constant density ρ (i.e. to be incompressible).

Conservation of momentum yields the Euler equations

Du
Dt

= −1
ρ
∇p + X, (2.1)

where u is the vector velocity, p is the pressure and X is the body force.
Here

D

Dt
=

∂

∂t
+ u ·∇ (2.2)

is the material derivative. We assume that the body force X derives from a
potential Ω, i.e. that

X = −∇Ω. (2.3)

In most applications considered in this book, the flow is assumed to be
irrotational. Therefore

∇× u = 0. (2.4)

Relation (2.4) implies that we can introduce a potential function φ such that

u = ∇φ. (2.5)

Conservation of mass gives

∇ · u = 0. (2.6)

7
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Then (2.5) and (2.6) imply that φ satisfies Laplace’s equation

∇2φ = 0. (2.7)

Flows that satisfy (2.4)–(2.7) are referred to as potential flows. Using the
identity

u ·∇u =
1
2
∇(u · u) + (∇× u) × u, (2.8)

(2.4) and (2.2) yield
Du
Dt

=
∂u
∂t

+
1
2
∇(u · u). (2.9)

Substituting (2.9) into (2.1) and using (2.3) and (2.5) we obtain

∇
(

∂φ

∂t
+

u · u
2

+
p

ρ
+ Ω

)
= 0. (2.10)

After integration, (2.10) gives the well-known Bernoulli equation

∂φ

∂t
+

u · u
2

+
p

ρ
+ Ω = F (t). (2.11)

Here F (t) is an arbitrary function of t. It can be absorbed in the definition
of φ, and then (2.11) can be rewritten as

∂φ

∂t
+

u · u
2

+
p

ρ
+ Ω = B, (2.12)

where B is a constant. For steady flows (2.12) reduces to
u · u

2
+

p

ρ
+ Ω = B. (2.13)

2.2 Free surface flows
We introduce the concept of a free surface by contrasting the flow past a
sphere (see Figure 2.1) with that of the flow past a bubble (see Figure 2.2).
Both flows are assumed to be steady and to approach a uniform stream
with a constant velocity U as x2 + y2 + z2 → ∞; the effects of gravity are
neglected. They can interpreted as the flows due to a sphere or a bubble
rising at a constant velocity U , when viewed in a frame of reference moving
with the sphere or the bubble. The pressure pb in the bubble is constant.
We denote by S the surface of the sphere or bubble and by n the outward
unit normal.

The flow past a sphere can be formulated as follows:

φxx + φyy + φzz = 0 outside S, (2.14)
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Fig. 2.1. The flow past a rigid sphere. The surface S of the sphere is described by
x2 + y2 + z2 = R2 , where R is the radius of the sphere.
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Fig. 2.2. The flow past a bubble. The surface S of the bubble is not known a priori
and has to be found as part of the solution.

∂φ

∂n
= 0 on S (2.15)

(φx, φy , φz) → (0, 0,−U) as x2 + y2 + z2 → ∞. (2.16)

Equation (2.14) is Laplace’s equation (2.7) expressed in cartesian coordi-
nates. The boundary condition (2.15) is known as the kinematic boundary
condition. It states that the normal component of the velocity vanishes
on S.
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Equations (2.14)–(2.16) form a linear boundary value problem whose
solution is

φ = −U

[
z +

R3z

2(x2 + y2 + z2)3/2

]
. (2.17)

Here R is the radius of the sphere.
We note that we have derived the solution (2.17) without using the Bernoulli

equation (2.13), which for the present problem can be written as

1
2
(φ2

x + φ2
y + φ2

z) +
p

ρ
=

1
2
U2 +

p∞
ρ

. (2.18)

Here p∞ denotes the pressure as x2 + y2 + z2 → ∞. Equation (2.18) holds
everywhere outside the sphere. In deriving (2.18) we have set Ω = 0 in
(2.13) and evaluated B by taking the limit x2 + y2 + z2 → ∞ in (2.13).
Then, using (2.16) gives B = U2/2 + p∞/ρ.

Equation (2.18) is nonlinear but it is only used if we want to calculate the
pressure p inside the fluid. In other words the main problem is to find φ by
solving the linear set of relations (2.14)–(2.16). We may then substitute the
values (2.17) of φ into the nonlinear equation (2.18) if we wish to compute
the pressure.

We now show that we need to use the nonlinear boundary condition (2.18)
to solve for the potential φ for a flow past the bubble of Figure 2.2. This
implies that, because of its nonlinearity, the flow past a bubble is a much
harder problem to solve than the flow past a sphere. The potential function
φ still satisfies (2.14)–(2.16). However, the main difference is that the shape
of the surface S of the bubble is not known and has to be found as part of the
solution. In other words the equation of the surface S is no longer given as it
was for the flow past a sphere. Therefore we need an extra equation to find
S. This equation uses (2.18) and can be derived as follows. First we relate
the pressure p on the fluid side of S to the pressure pb inside the bubble
by using the concept of surface tension. If we draw a line on a fluid surface
(such as S), the fluid on the right of the line is found to exert a tension T ,
per unit length of the line, on the fluid to the left. We call T the surface
tension coefficient. It depends on the fluid and also on the temperature. It
can be shown (see for example Batchelor [8]) that

p − pb = TK = T

(
1

R1
+

1
R2

)
. (2.19)

Here R1 and R2 are the principal radii of curvature of the fluid surface: they
are counted positive when the centres of curvature lie inside the fluid. The
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quantity

K =
(

1
R1

+
1

R2

)
(2.20)

is referred to as the mean curvature of the fluid surface. In most applications
presented in this book the surface tension T is assumed to be constant.

We now apply the Bernoulli equation (2.18) to the fluid side of the surface
S and use (2.19). This gives

1
2
(φ2

x + φ2
y + φ2

z) +
T

ρ
K =

1
2
U2 +

p∞ − pb

ρ
on S . (2.21)

Equation (2.21) is known as the dynamic boundary condition. This is the
extra equation needed to find S. To solve the bubble problem we seek the
function φ and the equation of the surface S such that (2.14)–(2.16) and
(2.21) are satisfied. It is a nonlinear problem that requires the solution of a
partial differential equation (here the Laplace equation (2.14)) in a domain
whose boundary (here S) has to be found as part of the solution. This is
a typical free surface flow problem. In this book we will describe various
analytical and numerical methods for investigating such nonlinear problems.

We note that the problem of Figure 2.2 is an idealised one, in which
the viscosity and gravity and the wake behind the bubble are neglected.
Bubbles with wakes and the effect of including gravity will be considered in
Section 3.4.3. Readers interested in the effects of viscosity are referred to,
for example, [117].

The dynamic boundary condition (2.21) is valid for steady flows with
Ω = 0. Combining (2.12) and (2.19) we find that the general form of the
dynamic boundary condition (for unsteady flows) with Ω &= 0 is

∂φ

∂t
+

u · u
2

+ Ω +
T

ρ
K = B. (2.22)

Here B is the Bernoulli constant. For steady flows, (2.22) reduces to

u · u
2

+ Ω +
T

ρ
K = B. (2.23)

2.3 Two-dimensional flows

As we shall see, many interesting free surface flows can be modelled as two-
dimensional flows. We then introduce cartesian coordinates x and y with
the y-axis directed vertically upwards (at present we reserve the letter z to
denote the complex quantity x + iy). In most applications considered in
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this book, the potential Ω (see (2.3)) is due to gravity. Assuming that the
acceleration of gravity g is acting in the negative y-direction, we write Ω as

Ω = gy. (2.24)

An example is the two-dimensional free surface flow past a semicircular
obstacle at the bottom of a channel (see Figure 2.3). This two-dimensional
configuration provides a good approximation to the three-dimensional free
surface flow past a long half-cylinder perpendicular to the plane of the figure
(except near the ends of the cylinder). The cross section of the cylinder is
the semicircle shown in Figure 2.3.

x

y

Fig. 2.3. Sketch of two-dimensional free surface flow past a submerged semicircle.

For two-dimensional potential flows, (2.4) and (2.6) become

∂u

∂y
− ∂v

∂x
= 0, (2.25)

∂u

∂x
+

∂v

∂y
= 0. (2.26)

Here u and v are the x- and y- components of the velocity vector u.
We can introduce a streamfunction ψ by noting that (2.26) is satisfied by

u =
∂ψ

∂y
, (2.27)

v = −∂ψ

∂x
. (2.28)

It then follows from (2.25) that

∇2ψ =
∂2ψ

∂x2 +
∂2ψ

∂y2 = 0. (2.29)
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For two-dimensional flows, equations (2.5) and (2.7) give

u =
∂φ

∂x
, (2.30)

v =
∂φ

∂y
(2.31)

and

∇2φ =
∂2φ

∂x2 +
∂2φ

∂y2 = 0. (2.32)

Combining (2.27), (2.28), (2.30) and (2.31) we obtain

∂φ

∂x
=

∂ψ

∂y
, (2.33)

∂φ

∂y
= −∂ψ

∂x
. (2.34)

Equations (2.33) and (2.34) can be recognised as the classical Cauchy–
Riemann equations. They imply that the complex potential

f = φ + iψ (2.35)

is an analytic function of z = x + iy in the flow domain. This result is
particularly important since it implies that two-dimensional potential flows
can be investigated by using the theory of analytic functions. This applies in
particular to all two-dimensional potential free surface flows with or without
gravity and/or surface tension included in the dynamic boundary condition.
It does not apply, however, to axisymmetric and three-dimensional free sur-
face flows. Since the derivative of an analytic function is also an analytic
function, it follows that the complex velocity

u − iv =
∂φ

∂x
− i

∂φ

∂y
=

∂ψ

∂y
+ i

∂ψ

∂x
=

df

dz
(2.36)

is also an analytic function of z = x + iy.
The theory of analytic functions will be used intensively in the follow-

ing chapters to study two-dimensional free surface flows. In particular the
following important tools will be useful.

The first tool is conformal mappings. These are changes of variable defined
by analytic functions. For example, if h(t) is an analytic function of t,
the change of variables z = h(t) enables us to seek the complex velocity
u − iv as an analytic function of t (since, as mentioned above, an analytic
function of an analytic function is also an analytic function). Such conformal
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mappings are used to redefine a problem in a new complex t-plane in which
the geometry is simpler than in the original z-plane.

The second tool is Cauchy’s theorem: If h(z) is analytic throughout a
simply connected domain D then, for every closed contour C within D,

∫

C
h(z)dz = 0. (2.37)

The third tool is the Cauchy integral formula: Let h(z) be analytic every-
where within and on a closed contour C, taken in the positive sense (coun-
terclockwise). Then the integral

1
2iπ

∫

C

h(z)
z − z0

dz (2.38)

takes the following values:

0 if z0 is outside C, (2.39)

h(z0) if z0 is inside C, (2.40)
1
2
h(z0) if z0 is on C. (2.41)

When z0 is on C the integral (2.38) is a Cauchy principal value.
We now show that for steady flows the streamfunction ψ is constant along

streamlines. A streamline is a line to which the velocity vectors are tangent.
Let us describe a streamline in parametric form by x = X(s), y = Y (s),
where s is the arc length. Then we have

−vX ′(s) + uY ′(s) = 0, (2.42)

where the primes denote derivatives with respect to s. Using (2.27) and
(2.28) we have

∂ψ

∂x
X ′(s) +

∂ψ

∂y
Y ′(s) =

dψ

ds
= 0, (2.43)

which implies that ψ is constant along a streamline. For steady flows the
kinematic boundary condition implies that a free surface is a streamline.
The streamfunction is therefore constant along a free surface.

For two-dimensional flows the dynamic boundary condition (2.22) be-
comes

∂φ

∂t
+

1
2
(φ2

x + φ2
y) + gy +

T

ρ
K = B. (2.44)

If we denote by θ the angle between the tangent to the free surface and the
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horizontal then the curvature K can be defined by

K = −dθ

ds
(2.45)

where again s denotes the arc length. In particular if the (unknown) equation
of the free surface is y = η(x, t) then

tan θ = ηx and
dx

ds
=

1
(1 + η2

x)1/2 . (2.46)

Using (2.45), (2.46) and the chain rule gives the formula

K = − ηxx

(1 + η2
x)3/2 . (2.47)

2.4 Linear waves

2.4.1 The water-wave equations

Many free surface flows involve waves on their free surfaces. When dissipa-
tion is neglected and the flow is assumed to be two-dimensional, these waves
approach uniform wave trains in the far field (see for example
Figure 2.3). Therefore a fundamental problem in the theory of free surface
flows is the study of a uniform train of two-dimensional waves of wavelength
λ extending from x = −∞ to x = ∞ and travelling at a constant velocity c.
The flow configuration is illustrated in Figure 2.4.

x

y

y = y1

y = y2 

Fig. 2.4. A two-dimensional train of waves viewed in a frame of reference moving
with the wave. The free surface profile has wavelength λ. The fluid is bounded
below by a horizontal bottom with equation y = −h. Also shown is the rectangular
contour used in (2.56).
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Here for convenience we have chosen a frame of reference moving with
the wave, so that the flow is steady. Using the notation of Section 2.3, we
formulate the problem as

φxx + φyy = 0, −h < y < η(x), (2.48)

φy = φxηx on y = η(x), (2.49)

φy = 0 on y = −h, (2.50)

1
2
(φ2

x + φ2
y) + gy − T

ρ

ηxx

(1 + η2
x)3/2 = B on y = η(x), (2.51)

∇φ(x + λ, y) = ∇φ(x, y), (2.52)

η(x + λ) = η(x), (2.53)

∫ λ

0
η(x)dx = 0, (2.54)

1
λ

∫ λ

0
φxdx = c on y = constant. (2.55)

Here g is the acceleration of gravity (assumed to act in the negative y-
direction), T is the surface tension, ρ is the density, y = −h is the equation
of the bottom and y = η(x) is the equation of the (unknown) free surface.
Equations (2.49) and (2.50) are the kinematic boundary conditions on the
free surface and on the bottom respectively. Equation (2.51) is the dynamic
boundary condition on the free surface. We have used (2.44) and the formula
(2.47) for the curvature of a curve y = η(x). Relations (2.52) and (2.53)
are periodicity conditions, which require the solution to be periodic with
wavelength λ. Equation (2.54) fixes the origin of the y-coordinates as the
mean water level. Finally, (2.55) defines the velocity c as the average value
of u = φx at a level y = constant in the fluid. The value of c is independent
of the constant chosen; this can be seen by applying Stokes’ theorem to
the vector velocity (u, v) using a contour C consisting of two horizontal
lines y = y1, y = y2 and two vertical lines separated by a wavelength (see
Figure 2.4). Since the flow is irrotational,

∫

C
udx + vdy = 0. (2.56)
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The contributions from the two vertical lines cancel by periodicity and (2.56)
gives

∫ λ

0
[u]y=y1 dx =

∫ λ

0
[u]y=y2 dx. (2.57)

Since y1 and y2 are arbitrary, the integral on the left-hand side of (2.55) is
independent of the level y = constant chosen in the fluid.

The relations (2.48)–(2.55) are referred to as the water-wave equations
because they model waves travelling at the interface between water and air
(although they apply also to other fluids).

2.4.2 Linear solutions for water waves

A trivial solution of the system (2.48)–(2.55) is

φ = cx, η(x) = 0 and B =
c2

2
. (2.58)

This solution describes a uniform stream with constant velocity c, bounded
below by a horizontal bottom and above by a flat free surface.

Linear waves are obtained by seeking a solution as a small perturbation
of the exact solution (2.58). Therefore we write

φ(x, y) = cx + ϕ(x, y) (2.59)

and assume that both |ϕ(x, y)| and |η(x)| are small. Substituting (2.59) into
(2.48)–(2.55) and dropping nonlinear terms in ϕ and η, we obtain the linear
system

ϕxx + ϕyy = 0, −h < y < 0, (2.60)

ϕy = cηx, y = 0, (2.61)

ϕy = 0, y = −h, (2.62)

−T

ρ
ηxx + cϕx + gη = 0, y = 0, (2.63)

∇ϕ(x + λ, y) = ∇ϕ(x, y), (2.64)

η(x + λ) = η(x), (2.65)

∫ λ

0
η(x)dx = 0, (2.66)
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1
λ

∫ λ

0
ϕxdx = 0 on y = constant. (2.67)

We choose the origin of x at a crest and assume that the wave is symmetric
about x = 0. Thus we impose the conditions

ϕ(−x, y) = −ϕ(x, y), (2.68)

η(−x) = η(x). (2.69)

Using the method of separation of variables, we seek a solution of (2.60)
in the form

ϕ(x, y) = X(x)Y (y). (2.70)

Substituting (2.70) into (2.60), (2.68) and (2.62) yields

X(−x) = −X(x), (2.71)

the ordinary differential equations

X ′′(x)
X(x)

= −Y ′′(y)
Y (y)

= constant = −α2, (2.72)

and the boundary condition

Y ′(−h) = 0. (2.73)

Here we have chosen a negative separation constant in (2.72), so that the
solution is periodic in x. Solutions of the two ordinary differential equations
(2.72) satisfying (2.71) and (2.73) are written as

X(x) = sinαx, (2.74)

Y (y) = cosh α(y + h). (2.75)

The periodicity condition (2.64) implies that

α = nk, (2.76)

where n is a positive integer and

k =
2π

λ
(2.77)

is the wavenumber. Multiplying (2.74) and (2.75) and taking a linear com-
bination of the solutions corresponding to the values (2.76) of α, we obtain

ϕ(x, y) =
∞∑

n=1

Bn cosh nk(y + h) sin nkx. (2.78)
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Here the Bn are constants.
Using the periodicity and the symmetry conditions (2.69) and (2.65), we

express η(x) as the Fourier series

η(x) = A0 +
∞∑

n=1

An cos nkx (2.79)

where the An are constants. The condition (2.66) implies that A0 = 0.
Substituting (2.78) and (2.79) into (2.61) and equating the coefficients of

sinnkx yields
cAn = −Bn sinhnkh, n = 1, 2, . . . (2.80)

Similarly substituting (2.78) and (2.79) into (2.63) gives

T

ρ
Ann2k2 + gAn + cBnnk cosh nkh = 0, n = 1, 2, . . . (2.81)

Eliminating Bn between (2.80) and (2.81) yields
(

g +
T

ρ
n2k2 − c2nk

sinh nkh
cosh nkh

)
An = 0, n = 1, 2, . . . (2.82)

Since we seek a nontrivial periodic solution η(x) &= 0, we can assume without
loss of generality that A1 &= 0; then (2.82) with n = 1 implies that

c2 =
(

g

k
+

T

ρ
k

)
tanh kh. (2.83)

Relation (2.82) for n > 1 gives

An = 0, n = 2, 3, . . . , (2.84)

provided that

g +
T

ρ
n2k2 − c2nk

sinh nkh
cosh nkh &= 0, n = 2, 3, . . . (2.85)

If (2.85) is satisfied, the solution of the linear problem is

ϕ = − cA1

sinh kh
cosh k(y + h) sin kx, (2.86)

η = A1 cos kx. (2.87)

If the condition (2.85) is not satisfied for some integer value m of n, the
solution of the linear problem is

ϕ = − cA1

sinh kh
cosh k(y + h) sin kx − cAm

sinh mkh,
cosh mk(y + h) sin mkx,

(2.88)
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η1 = A1 cos kx + Am cos mkx, (2.89)

where Am is an arbitrary constant. In the theory of linear waves, it is
usually assumed that Am = 0. However, when we are developing nonlinear
theories for water waves in Chapters 5 and 6, i.e. improving the linear
approximations (2.88) and (2.89) by adding nonlinear corrections or solving
the fully nonlinear problem (2.48)–(2.55) numerically, we shall see that Am &=
0. Two consequences are the existence of many different families of nonlinear
periodic gravity–capillary waves and the existence of solitary waves with
oscillatory tails.

The velocity c is called the phase velocity and equation (2.83) is the
(linear) dispersion relation. Relation (2.83) implies that waves of differ-
ent wavenumbers and therefore of different wavelengths travel at different
phase velocities c.

It is convenient to rewrite (2.83) in the dimensionless form

F 2 =
(

1
kh

+ τkh

)
tanh kh, (2.90)

where
F =

c

(gh)1/2 (2.91)

is the Froude number and

τ =
T

ρgh2 (2.92)

is the Bond number. Relation (2.90) is shown graphically in Figure 2.5,
where we present values of F 2 versus 1/(kh) = λ/(2πh) for four values of τ .

The curves of Figure 2.5 illustrate that F 2 is a monotonically decreasing
function of λ/h when τ > 1/3 and that it has a minimum for τ < 1/3.
As λ/h → ∞, F → 1. The different behaviours for τ < 1/3 (minimum)
and τ > 1/3 (monotone decay) in Figure 2.5 have many implications, in
particular for the study of nonlinear periodic and solitary gravity–capillary
waves (see Chapters 5 and 6).

We now examine two particular cases.
The first is the case of water of infinite depth. This is obtained by taking

the limit kh → ∞ in (2.83), (2.86) and (2.87) and leads to

ϕ = −cA1e
ky sin kx, (2.93)

η = A1 cos kx, (2.94)

c2 =
g

k
+

T

ρ
k. (2.95)
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Fig. 2.5. Values of F 2 versus 1/(kh). The curves correspond from top to bottom
to τ = 1.3, τ = 1/3, τ = 0.1 and τ = 0.05. For τ < 1/3 the curves have a minimum
whereas for τ > 1/3 the curves are monotonically decreasing.

Since kh = 2πh/λ, the infinite-depth results (2.93)–(2.95) provide an ap-
proximation to the finite-depth results (2.83), (2.86) and (2.87) when the
wavelength λ is small compared with the depth h.

Waves with g &= 0, T = 0 are referred to as pure gravity waves. They are
characterised in the case of infinite depth by the dispersion relation

c2 =
g

k
. (2.96)

Similarly, waves with g = 0, T &= 0 are called pure capillary waves and are
characterised in the infinite-depth case by the dispersion relation

c2 =
T

ρ
k. (2.97)

A simple calculation based on (2.95) shows that c2 reaches a minimum value
given by

cmin =
(

4Tg

ρ

)1/4
(2.98)

when

k = kmin =
(ρg

T

)1/2
. (2.99)

Graphs of c versus λ in units of cmin and λmin = 2π/kmin are shown in Figure
2.6.

The solid curve corresponds to (2.95), the dotted curve to (2.97), and the
broken curve to (2.96). These curves show that waves with λ > λmin are
dominated by gravity and can be approximated by pure gravity waves for
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Fig. 2.6. Values of c versus λ = 2π/k in units of cmin and λmin . The solid curve
corresponds to (2.95), the dotted curve to (2.97) and the broken curve to (2.96).

λ large. Waves with λ < λmin are dominated by surface tension and can be
approximated by pure capillary waves for λ small.

The second particular case is that of pure gravity waves (i.e. T = 0) in
water of finite depth. Then (2.90) reduces to

khF 2 = tanh kh. (2.100)

Since
d

d (kh)
tanh kh ≤ 1, (2.101)

equation (2.100) has the solution kh > 0 when F < 1. For F > 1 the only
real solution of (2.100) is kh = 0. This implies that linear gravity waves
only exist when F < 1; for F > 1, linear gravity waves are not possible.
Flows characterised by F < 1 are called subcritical and those characterised
by F > 1 are called supercritical. The distinction between subcritical and
supercritical flows will appear often in this book.

So far we have discussed linear waves in a frame of reference moving
with the wave. This is a convenient choice because the flow is then steady.
However, it is also useful to look at waves from the point of view of a fixed
frame of reference in which the wave moves to the left at a constant velocity
c. The nonlinear governing equations are then

φxx + φyy = 0, −h < y < η(x, t), (2.102)

ηt = φy − φxηx on y = η(x, t), (2.103)

φy = 0 on y = −h, (2.104)
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φt +
1
2
(φ2

x + φ2
y) + gy − T

ρ

ηxx

(1 + η2
x)3/2 = B on y = η(x, t), (2.105)

φ(x + λ, y, t) = φ(x, y, t), (2.106)

η(x + λ, t) = η(x, t), (2.107)
∫ λ

0
η(x, t)dx = 0. (2.108)

A trivial solution of the system (2.102)–(2.108) is

φ = 0, η = 0 and B = 0. (2.109)

We can construct linear waves by assuming a small perturbation of the exact
solution (2.109) in the form of a wave travelling to the left at a constant
velocity c. Therefore we rewrite φ and η in terms of two new functions φ̄
and η̄:

φ(x, y, t) = φ̄(x + ct, y) and η(x, t) = η̄(x + ct) (2.110)

Substituting (2.110) into the system (2.102)–(2.108) and dropping nonlinear
terms in φ̄ and η̄, we obtain the linear system

φ̄xx + φ̄yy = 0, −h < y < 0, (2.111)

cη̄x = φ̄y on y = 0, (2.112)

φ̄y = 0 on y = −h, (2.113)

cφ̄x + gη̄ − T

ρ
η̄xx = 0 on y = 0, (2.114)

φ̄(x + λ + ct, y) = φ̄(x + ct, y), (2.115)

η̄(x + λ + ct) = η̄(x + ct), (2.116)
∫ λ

0
η̄(x + ct)dx = 0. (2.117)

Following the derivation of (2.86)–(2.89), we find that the solution of
(2.111)–(2.117) is

φ̄ = − cA1

sinh kh
cosh k(y + h) sin k(x + ct), (2.118)

η̄ = A1 cos k(x + ct) (2.119)
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if (2.85) is satisfied and

φ̄ = − cA1

sinh kh
cosh k(y + h) sin k(x + ct),

− cAm

sinhmkh
cosh mk(y + h) sinmk(x + ct), (2.120)

η̄ = A1 cos k(x + ct) + Am cos mk(x + ct) (2.121)

if for n = m (2.85) is not satisfied. The dispersion relation is given as before
by (2.83).

2.4.3 Superposition of linear waves

Since the system (2.111)–(2.117) is linear, new solutions can be obtained by
superposing solutions corresponding to different values of k and/or of A1.

We consider two particular superpositions for the solution (2.118), (2.119).
The first corresponds to the superposition of two waves of the same am-

plitude travelling at the same velocity but in opposite directions. This gives

η = A1 cos k(x + ct) + A1 cos k(x − ct), (2.122)

φ = − cA1

sinh kh
cosh k(y + h) sin k(x + ct)

+
cA1

sinh kh
cosh k(y + h) sin k(x − ct). (2.123)

Using the trigonometric identities

cos p + cos q = 2 cos
p + q

2
cos

p − q

2
(2.124)

sin p + sin q = 2 sin
p + q

2
cos

p − q

2
(2.125)

we can rewrite (2.122), (2.123) as

η = 2A1 cos kx cos kct, (2.126)

φ = −2
cA1

sinh kh
cosh k(y + h) cos kx sin kct. (2.127)

The solution defined by (2.126), (2.127) is known as a linear standing wave
because the position of its nodal points and of the maximum displacement
of the free surface are fixed as t varies. The wave does not propagate and
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its free surface moves periodically up and down as t varies. The period of
this motion is

Ts =
2π

kc
. (2.128)

Since u = φx = 0 along the lines x = 0 and x = π/k = λ/2, we can replace
these two lines by walls (the kinematic boundary condition on them is then
automatically satisfied). The resulting flow models the periodic sloshing of
a liquid in a container (see Figure 2.7).

0

0.1

0.2

0 1 2 3

Fig. 2.7. Standing wave for A1 = 0.1 and k = 1. The broken line is the free surface
profile at t = 0 and the dotted line is the free surface profile at t = Ts/2. The flow
models sloshing in a container bounded by two vertical walls at x = 0 and x = π.

An interesting question is whether there are similar nonlinear solutions.
This question is addressed in Chapter 11, where we construct analytical
approximations to such solutions.

The second example of superposition that we consider is that of two wave
trains of the same amplitude travelling in the same direction but with slightly
different wavenumbers k and k̄. We first introduce the angular frequency

ω = kc (2.129)

and write ω = W (k). Using (2.83) we have

W (k) = k

[(
g

k
+

T

ρ
k

)
tanh kh

]1/2
. (2.130)

Next we rewrite (2.118) and (2.119) as

η̄ = A1 cos[kx + W (k)t], (2.131)

φ̄ = − cA1

sinh kh
cosh k(y + h) sin[kx + W (k)t]. (2.132)
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The superposition described above then yields

η̄ = A1 cos[kx + W (k)t] + A1 cos[k̄x + W (k̄)t]. (2.133)

Using the identity (2.124), we can rewrite (2.133) as

η̄ = 2A1 cos
{[

1
2
[(k + k̄)]x +

1
2
[W (k) + W (k̄))t

]}

× cos
{

1
2
[(k − k̄)]x +

1
2
[(W (k) − W (k̄)t]

}
. (2.134)

For k̄ close to k, we may approximate (2.134) by

η̄ = α(x, t) cos[kx + W (k)t], (2.135)

where

α(x, t) = 2A1 cos
{

1
2
(k − k̄)x +

1
2
[W (k) − W (k̄)]t

}
. (2.136)

The expression (2.135) is the same as (2.131) except that the constant am-
plitude A1 has been replaced by the variable amplitude α(x, t).

Differentiating (2.136) with respect to x and t yields

∂α

∂x
= −A1(k − k̄) sin

{
1
2
(k − k̄)x +

1
2
[W (k) − W (k̄)]t

}
(2.137)

and

∂α

∂t
= −A1[W (k) − W (k̄)] sin

{
1
2
(k − k̄)x +

1
2
[W (k) − W (k̄)]t

}
. (2.138)

The derivatives (2.137) and (2.138) are of order k − k̄ and W (k) − W (k̄)
respectively. They are therefore small for k̄ close to k. This implies that the
amplitude α(x, t) is a slowly varying function of x and t. In other words, the
solution is a wave of wavenumber k, travelling at velocity c, whose amplitude
α(x, t) is slowly modulated. The amplitude α(x, t) is itself a wave travelling
at velocity

W (k) − W (k̄)
k − k̄

. (2.139)

For k̄ close to k, the velocity (2.139) becomes

cg =
dW (k)

dk
. (2.140)
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The velocity cg is called the group velocity. In general it differs from the
phase velocity

c =
W (k)

k
. (2.141)

For water waves, (2.130) and (2.140) give

cg =
1
2

[(
gk +

T

ρ
k3

)
tanh kh

]−1/2

×
[(

g +
3Tk2

ρ

)
tanh kh +

(
g +

T

ρ
k2

)
kh

cosh2 kh

]
. (2.142)

We now examine in more detail the case of infinite depth. The phase
velocity c is then given by (2.95). Taking the limit kh → ∞ in (2.142), we
obtain

cg =
1
2

(
gk +

Tk3

ρ

)−1/2 (
g +

3Tk2

ρ

)
. (2.143)

In particular, we have for pure gravity waves (g &= 0, T = 0)

cg =
1
2

(g

k

)1/2
=

c

2
(2.144)

and for pure capillary waves (T &= 0, g = 0)

cg =
3
2

(
Tk

ρ

)1/2
=

3c

2
. (2.145)

The phase velocity c is the velocity at which the wave travels. The group
velocity cg is the velocity at which the slowly varying amplitude travels.
This phenomenon is illustrated in Figure 2.8, where we present the solution
(2.135) for pure gravity waves of infinite depth.

Here we have assumed g = 1, k = 1, k̄ = 1.1 and A1 = 0.2 and have
chosen t = 0. The outside curves are the envelope of the wave train. Both
the wave train and the envelope travel to the left. Using (2.96) we find
that the wave train travels at the speed c = 1 whereas (2.144) shows that
the envelope travels at the speed cg = 1/2. Since cg < c the waves will
advance in their envelope, and as they approach the nodal points of their
envelope they will progressively die out. However, waves are born just ahead
of the nodal points of the envelope. These graphical results illustrate that
the wave travels at the velocity c whereas the envelope of the wave (i.e. the
amplitude) travels at the velocity cg.
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 0

0 20 40

0.4

60

0.2

Fig. 2.8. The solution (2.135) for A1 = 0.2, k = 1 and k̄ = 1.1.

A simple relation between c and cg can be derived by combining (2.129)
and (2.140) to give

cg = c + k
dc

dk
. (2.146)

Relation (2.146) shows that if c has a minimum for some value of k, then
c = cg at this minimum (since dc/dk = 0 at a minimum). For example, in
water of infinite depth c has a minimum for k = kmin, where kmin is given by
(2.99) (see also Figure 2.6), and cg = c when k = kmin. On the right of the
minimum in Figure 2.6 we have dc/dk < 0, and (2.146) implies that cg < c.
Similarly, dc/dk > 0 on the left of the minimum in Figure 2.6 and cg > c.

One important property of the group velocity is that it is the speed at
which the energy of a linear wave travels. We will demonstrate this property
in the particular case of pure gravity waves in water of finite depth. The
analysis is similar to that presented in Billingham and King [13]. At a fixed
value of x, the rate at which the fluid on the left does work on the fluid on
the right is given by

∫ 0

−h
p
∂φ

∂x
dy. (2.147)

The average of (2.147) over one period is

Ef =
ω

2π

∫ t∗+2π/ω

t∗

∫ 0

−h
p
∂φ

∂x
dydt, (2.148)

where t∗ is an arbitrary value of t and ω is the angular frequency. The value
of p is obtained by linearising (2.12) (with Ω = gy) around u = 0. This
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gives

p = −ρ
∂φ

∂t
− ρgy + constant. (2.149)

Using (2.118) we find
∫ t∗+2π/ω

t∗

∂φ

∂x
dt = − cA1k

sinh kh
cosh k(y + h)

∫ t∗+2π/ω

t∗
cos k(x + ct)dt = 0.

(2.150)
Therefore (2.148) simplifies to

Ef = −ρ
ω

2π

∫ t∗+2π/ω

t∗

∫ 0

−h

∂φ

∂t

∂φ

∂x
dydt. (2.151)

Substituting (2.118) into (2.151) and evaluating the integral yields

Ef =
ρA2

1k
2c3

4 sinh2kh

(
h +

sinh 2kh

2k

)
. (2.152)

We now define the kinetic and potential energy per unit horizontal length
by

∫ 0

−h

1
2
ρ

[(
∂φ

∂x

)2
+

(
∂φ

∂y

)2
]

dy (2.153)

and ∫ η

0
ρgydy =

1
2
ρgη2. (2.154)

Averaging the quantities (2.153) and (2.154) over a wavelength gives the
mean kinetic energy

K̄ =
ρ

2λ

∫ λ

0

∫ 0

−h

[(
∂φ

∂x

)2
+

(
∂φ

∂y

)2
]

dydx (2.155)

and the mean potential energy

V̄ =
ρg

2λ

∫ λ

0
η2dx. (2.156)

Substituting (2.118) and (2.119) into (2.155) and (2.156) gives, after inte-
gration,

K̄ = V̄ =
1
4
ρgA2

1. (2.157)

Thus the total energy is

E = K̄ + V̄ =
1
2
ρgA2

1. (2.158)
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Combining (2.152) and (2.158) we obtain

Ef = E
1
2
c

(
1 +

2kh

sinh 2kh

)
. (2.159)

Using (2.142) with T = 0 gives

cg =
c

2

(
1 +

2kh

sinh 2kh

)
. (2.160)

Therefore comparing (2.159) and (2.160) yields

Ef = Ecg. (2.161)

This shows that the energy in the wave travels at the group velocity cg.
This property will be used in Chapter 4, where we discuss the radiation
condition.


